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ABSTRACT 

Over the past several years, techniques have  been 
developed to discriminate between fault-prone software 
modules and those that are not, and to estimate a soft- 
ware system’s residual fault content. These techniques 
can  be applied during the stages of a development effort 
prior to test, thereby giving software managers  greater 
visibility into the systems being  developed  and  allow- 
ing them to exert more accurate and  precise control into 
their quality. There are practical issues involved in 
implementing these measurement techniques in a pro- 
duction development environment. In this  paper, we 
describe measurement techniques being  implemented 
on a development effort at the Jet Propulsion  Labora- 
tory, identify implementation issues, and describe pro- 
posed resolutions to these issues. 

INTRODUCTION 

Over the past several years, techniques have  been 
developed to use measurements of a software system’s 
structure to discriminate between fault-prone software 
modules and those that are not,  and to estimate a soft- 
ware system’s residual fault content [Mun97, Mun98, 
Nik98, Sch97, Sch991. These techniques can  be  ap- 
plied during the earlier stages of a development effort 
prior to test,  thereby giving software managers greater 
visibility into their projects and  allowing  them  to  exert 
more accurate and precise control over the systems  for 
which  they are responsible. 
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Boolean discriminant functions (BDFs) [Sch97] 
and  measures of Relative Critical Value Deviation 
(RCVD) [Sch99] can  be  used  in classifying the quality 
of software during  the quality control and prediction 
process. Using failure data from the Space Transporta- 
tion System Primary Avionics Software System (STS 
PASS),  these functions have been shown to provide 
good  accuracy  (i.e., 3% error) for classifying low  qual- 
ity software. This is true  because the BDFs consist of 
more  than just a set of metrics. They include additional 
information for discriminating quality: critical values. 
To form  BDFs,  nonparametric statistical methods are 
used  to: 
1. identify a set of candidate metrics for further 

analysis. 
2. identify  the critical values of the metrics. This 

computation  is  based on the Kolmogorov-Smirnov 
(K-S) test. 

3.  find the optimal BDF of  metrics  and critical values 
based  on  the  ability  of  the BDF to satisfy both sta- 
tistical (i.e., ability to classify quality) and applica- 
tion (i.e., quality  achieved versus the cost to 
achieve it) criteria. 

Detailed  maps of a software system’s residual fault 
content at any  point in time  can  be constructed from its 
structural evolutionary and failure histories.  We  have 
shown  that it is possible to identify a relationship be- 
tween the measured amount of change between  two 
successive versions  of a software module and the num- 
ber of faults inserted into that module, thereby provid- 
ing  an estimate of the rate of fault insertion [Mun98, 
Nik98, Nik98al. This lets us estimate the number of 
faults inserted  into each module of the system at any 
point during its development. The number  of residual 
faults in each module is computed by subtracting the 
number of faults known  to  have been repaired in a 
module  (taken  from the system’s failure history) from 
the  estimated  number of faults inserted into that system. 
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Software managers can  use  this  information  to  more 
accurately prioritize those  modules  to  which fault iden- 
tification and repair resources should  be applied, 
thereby  making the most effective use  of  limited  re- 
sources. 

Although our previous work has involved  only  the 
implementation phase, these methods can  make  use of 
software structural methods available prior to imple- 
mentation, thereby allowing faulty modules to be  iden- 
tified early development phases. This is  especially  ap- 
pealing since it has been  repeatedly  demonstrated  that 
removing faults during the latter phases of a software 
development effort can be one or two orders of magni- 
tudes more costly than removing those same faults 
during earlier development phases [Boe81]. There are 
practical issues that must be addressed prior to imple- 
menting these methods on a software development ef- 
fort. These involve: 

Measuring workproducts such as specifications and 
designs, which are often expressed in a mixture of 
formal and informal notations, and  may  not  be eas- 
ily measurable. 
Devising accurate, consistent, and practical meth- 
ods of tracing discovered faults back to the  point at 
which  they originally inserted into the  system. 
This is required in order to develop models  relating 
the fault insertion rate to  measurements of a sys- 
tem’s structural evolution. 

To resolve the first issue, we  are currently investi- 
gating methods of translating the outputs of  some of the 
more popular tools for diagramatically representing a 
system’s behavior (i.e., statecharts) into forms that  can 
easily  be measured. With respect to the  second issue, 
we are refining an ad-hoc taxonomy  developed as part 
of our initial work and determining how it might  be 
formalized. In the remainder of this paper, we briefly 
discuss the management techniques we are working to 
implement on  the  Mission Data System (MDS), a soft- 
ware development project at JPL  which  will  produce 
the next generation of planetary  exploration flight and 
ground software, discuss in more detail the practical 
issues associated with these techniques, and describe 
methods being considered for their resolution. 

IDENTIFYING FAULT-PRONE 
SOFTWARE COMPONENTS 

Measurements of a software system’s structure can 
be  used to discriminate between fault-prone modules 
and those that are not fault prone. During development, 
structural measurements of the  system are taken  and 
used to construct BDFs  and  the  RCVD  metrics. A BDF 
is a Boolean function consisting of  AND  and  OR op- 

erators, module  metric values, and metric critical values 
that  is  used to classify  the  quality of software [Sch99]. 
A metric critical value is a value  in  the range of  the 
metric, estimated by using  the inverse of the Kol- 
mogorov-Smirnov distance that provides a threshold 
between  two levels (e.g.,  high  and low) of the quality of 
the software. 

In forming BDFs, it is important to perform a mar- 
ginal analysis when  making a decision about how  many 
metrics to include. If many  metrics are added at once to 
the  set, the contribution of individual metrics is ob- 
scured. Also,  the  marginal analysis provides an effec- 
tive rule for deciding when  to stop adding metrics. If 
certain  metrics are dominant in their effects on classi- 
fying quality, additional metrics are  not  needed to accu- 
rately  classify quality. Related to this property of 
dominance is  the  property of concordance, which  is  the 
degree to which a set of metrics produces the same re- 
sult in classifying software quality. A high value of 
concordance implies that additional metrics will  not 
make a significant contribution to accurately classifying 
quality; hence,  these metrics are redundant. 

Note  that the BDF provides only an accepvreject 
decision on a component’s quality. The RCVD,  which 
measures  the extent to  which a measurement deviates 
from its critical value, further indicates the extent to 
which a component’s quality is above or below  an ac- 
ceptable level. 

Taking  the structural measurements  necessary to 
form BDFs  and compute the  RCVD is a straightforward 
matter.  Commercial  measurement tools are readily 
available, and  these  can  be  easily integrated into mod- 
ern  configuration  management  tools,  such as CCC  Har- 
vest  or ClearCase, to make  the measurements without 
requiring any extra effort on  the part of the developers. 
In  selecting  the  measurement  tool  and setting up  the 
measurement  process,  the following decisions need to 
be  made: 

0 At what point are the measurements to  be 
made  (e.g., at the completion of a specified 
build, at regular intervals)? 

0 What structural measurements will  be taken? 
Table 2 in [Sch99] can  be  used as a guideline 
for selecting appropriate measurements. 
Whatever tool  is  selected should clearly iden- 
tify  how  the measurements are taken. 

The more difficult aspect is counting the  number of 
problem  reports  associated  with each component so that 
critical values for the BDFs may be computed. Our 
experience indicates that the  most effective way of 
gathering this  information is to choose a problem re- 
porting system that integrates with the configuration 
management  system. Links are established between 
each problem report and the components that are modi- 
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fied in response to that  problem  report.  Relating  prob- 
lem reports to software components then  becomes a 
simple matter of querying the problem report database. 
We are currently working to implement such a meas- 
urement system for the MDS, the flight and  ground 
software being developed at JPL for the  next  generation 
of  planetary exploration spacecraft. 

In principal, BDFs  and  RCVD  can  be  extended  to 
development activities prior to implementation. If 
structural information about specification or design 
artifacts is available, and  if technical reviews such as 
Fagan inspections [Fag761 are regularly  held to identify 
faults in the workproducts, then  BDFs  can  be  formed 
and  RCVD values computed. While there is  an abun- 
dance of tools for measuring source code during the 
implementation phase, we have found it significantly 
more difficult to measure artifacts produced in earlier 
development phases.  In  many development efforts, we 
have observed that the syntax of the  notations  used in 
producing designs and specifications is  not as well- 
defined as that of the source code, making it difficult to 
define a complete or consistent set of measurements.  In 
many cases, designs and specifications are specified  in 
a mixture of natural language and other informal or 
semi-formal notations. This compounds the problem by 
introducing the possibility of incompatibilities between 
the notations. 

To resolve the measurement problem, we are 
working in cooperation with the MDS  to devise meth- 
ods of measuring UML diagrams. Current MDS  plans 
call for producing specifications and designs in the 
form of UML diagrams such as use cases, scenarios, 
class diagrams, and statecharts. Unfortunately, cur- 
rently available UML tools do not provide structural 
measurements of the models they produce. However, 
there are ways  of translating some of the output of these 
tools into forms that  can be easily  measured.  For  in- 
stance, the MOCES tool [Mik97] can  be  used  to  trans- 
late suitably-constrained statecharts produced by 
Statemate into the Promela modeling language used by 
the Spin model-checker [Ho197]. It is  then a relatively 
straightforward matter to design  and  implement a 
structural analyzer to measure the statechart’s Promela 
equivalent. We are investigating the  practicality  of 
doing this type of measurement in  the  MDS environ- 
ment. 

ESTIMATING FAULT INSERTION 
RATES AND FAULT CONTENT 

Our previous work indicates that there is a strong 
relationship between measurements of a system’s 
structural evolution and the rate at which faults are in- 
serted during development [Nik98, Nik98al. During 

implementation, these measurements can  be  taken at the 
level of individual modules (i.e., methods, functions). 
These  measurements act as a fault surrogate - they are 
strongly  related  to  the system’s fault content, and  they 
aggregate in the same manner as fault counts of indi- 
vidual  modules aggregate into a total fault count for the 
system. 

Using  only  measures of structural evolution, it is 
possible to estimate the proportional fault burden of a 
module at any  point during its development. If the total 
amount of change that  module i has undergone with 
respect  to a baseline B is  given by x:, then its propor- 
tional fault burden d: is  given  by: 

where N is the  number of modules comprising the sys- 
tem. This quantity  can be compared to each module’s 
proportion of faults discovered during test, g:. Com- 
parisons of d: and gs can be  made to identify those 
modules  to  which additional fault identification re- 
sources should  be allocated: If d: is greater than g: , 
then additional resources should be allocated to module 
i. Conversely, if g,” is greater than d: , then too many 
resources have  already  been allocated to module i, and 
no further fault identification effort is  required until d,“ 
becomes equal or  greater to d:. 

Once repaired, faults can  be identified and  traced 
back to the  point at which  they  were first inserted into 
the  system. This information  can  be  used to construct a 
regression model  relating the number of faults inserted 
per  unit of structural change [Nik98a]. The number of 
faults inserted  into  the  system at the module level can 
then  be estimated, as can the residual fault content of 
each module. The modules with the largest estimated 
residual fault content can  be identified, and allocated 
fault identification and repair resources proportional to 
their residual fault content. 

The structural evolution of the software at the 
module level can be measured transparently to the de- 
velopers.  Modern configuration management tools 
make it straightforward  matter to make structural meas- 
urements as part of checking a change package into the 
repository. These tools can  be  set up to start the meas- 
urement  tool  each time a developer checks a source file 
back into the repository, thereby  making it unnecessary 
for the developer to perform any extra work related to 
measurement. The measurement history is automati- 
cally recorded, ready for the  use  by the test and quality 
assurance staff. We are currently working  with  MDS to 
integrate a measurement  tool  we have developed for 
this purpose, EMA,  with  the  MDS configuration man- 
agement system. 
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Tracing faults back to their point  of  origin  is 
somewhat more complicated. Ideally, a problem  report 
would identify each fault repaired in response to  the 
reported failure, but we have  found  that this is  not done 
for almost of the software development efforts we  have 
studied. However, most development efforts require 
that the source code files that were  changed in response 
to a reported failure be identified. It therefore becomes 
necessary to examine the changes made in response to a 
reported failure to identify  the faults that  have  been 
repaired. We have developed a set of fault counting 
and identification rules to help analysts in  this  activity 
[Nik98]. Once the faults have been identified, it is  nec- 
essary to find the point at which  they  were first inserted 
into the source code, so that  the relationship between 
the amount of structural change made  to  the  system  and 
the number of faults inserted can be established. This 
means searching all previous versions  of a module  prior 
to the point at which the fault was  corrected.  Unfortu- 
nately, this  is largely a manual technique at this point. 
As part of our future work,  we  hope to formalize the 
fault counting and identification rules we have devel- 
oped. We hope to develop a search tool  which  analysts 
could use to automate searches of all previous revi- 
sions of a module. 

In identifying and counting faults, it is necessary  to 
separate changes due to fault repair from those  made 
due to change requests. We are developing a problem 
resolution process for the  MDS  that  would give priority 
to fault repair. Before modifying or enhancing a com- 
ponent, developers should first repair known faults in a 
component and submit the repaired component to  the 
repository. Developers would  then check out  the re- 
paired component to which enhancements or other 
modifications could be  made.  In  addition to reducing a 
source of noise in the measurements, it is a matter  of 
good engineering practice to  repair a component con- 
taining known faults before attempting to enhance it. 

MEASURING TEST EFFICIENCY 

Our recent work has also shown that  test  efficiency 
can be  measured by comparing an ideal execution pro- 
file to  the actual profile observed  while executing the 
software during test [Mun97, Mun98, Nik98al. The 
ideal execution profile is constructed from a detailed 
history of the software’s structural evolution  during  its 
development. Since these  measurements  have been 
shown to be strongly related to the rate at which faults 
are inserted into the software system during its devel- 
opment, each module should  then  be  tested  according to 
the amount of change it has undergone since the  last 
time it was tested. Suppose that a system about to enter 
test consists of a set of modules A, and  that  the  cumu- 

lative amount of change that has  been  made to all the 
modules in A since the last round  of testing is X. If a 
particular module a has incurred a total amount of 
change x since the last round of testing occurred, the 
proportion  of  time  that  should be spent executing mod- 
ule a is x/X. This ideal profile can then be quantita- 
tively  compared  with  the profile observed during test. 
The testing  staff  can  then: 

Calculate a numerical value for  the effectiveness of 
the  test procedure(s). 

0 Identify those modules that were insufficiently 
tested,  and  the extent to which  they  were insuffi- 
ciently tested. 

0 Identify  those  modules in which  too  much execu- 
tion  time  was spent during test,  and  by  how  much 
the ideal execution time was exceeded. 
The structural evolution of the source code is 

measured as described above. Measuring the execution 
profile  may  be somewhat more invasive, in  that the 
software needs to be monitored during execution. The 
ideal way  of accomplishing this is to design the  neces- 
sary  instrumentation  into the software. However, this 
requires some effort to design  and implement the soft- 
ware. Traditionally, software development efforts have 
not  seen  any  benefit to devoting scarce resources to a 
capability  that  is  not seen to directly affect the system’s 
functionality. Another way  of accomplishing this is to 
compile the software with instrumentation that will 
record  the transitions from module to module during 
execution. Comparatively little effort is required to link 
the  instrumentation package into the software system. 
However, the instrumentation may alter the software’s 
behavior. This is particularly  true in real time systems, 
for which changes in timing relationships may alter the 
system’s behavior in unpredictable ways. 

A third way  of observing a system’s execution pro- 
file is to build  the  necessary instrumentation into  the 
testbed on which  the system is run during the various 
testing  phases.  This is attractive for the following rea- 
sons: 

There is  no  need to link an instrumentation pack- 
age into  the software. The system’s timing rela- 
tionships will  not  be affected. 

0 Depending  on  the nature of  the testbed, it may  be 
possible to capture more extensive information 
about the system’s behavior during execution than 
would  be possible with either of  the  other  two 
methods.  There  is a limit to how  much information 
may be  extracted from a system using built-in or 
linked-in  instrumentation before its behavior starts 
to  be  adversely affected. However, if the instru- 
mentation is implemented on the testbed, it is the 
testbed’s rather than the system’s performance that 
is  affected. Even if the instrumentation places a 
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relatively high  load  on  the testbed, the  system  un- 
der test will  behave  in the same fashion as if  the  in- 
strumentation placed a small  load on the testbed. 

0 If the testbed is designed to be  used for multiple 
missions, the instrumentation becomes part of the 
multimission capability. It is easier to use a capa- 
bility that is already available rather  than rebuild- 
ing it for each new  mission. 

We are working to implement this  trace  capability 
on  the bit-level simulator that will  be  produced as part 
of  the  test environment for the  MDS. We believe  that 
only the following requirements need to be  levied on 
the simulator to implement this capability: 

During execution, the simulator shall  log  to a user- 
specified file the following information each  time 
control is passed from module to module: 
0 The address to which control is transferred. 

The time at which control is transferred. 
NOTE: Time may  be  expressed  in  terms  other 
than seconds or fractions of seconds - it would 
be perfectly satisfactory to express elapsed 
time during a test as the cumulative number of 
(simulated) CPU clock cycles, for instance. 

0 Users shall be able to select whether  or  not  they 
want to log an execution profile prior to starting a 
test. 

Of course, there will  be constraints on  the size of 
the log file that can  be produced, which  will  require 
decisions on the following matters: 
0 Should the user be allowed to specify  the  maxi- 

mum size of the log file prior to a test run, and  how 
should that size be specified (e.g., size in bytes, 
size in number of transitions, amount of execution 
time to be recorded)? What  should  be the simula- 
tor’s response if the desired file size is too large? 

0 Should there be manual capabilities to start and 
stop logging? 
Once the log file becomes full, should  logging 
stop, or continue at the  beginning of the file? 
Should the user be  given a choice? 

There will also be issues relating to  the  perform- 
ance of the simulator that  will  need  to  be addressed. 
Although a large instrumentation load  on  the simulator 
will  not affect the behavior of the  system  under  test, it 
may affect the amount of  time  that it takes to execute a 
test. In a real development effort, there  will always be 
pressure to adhere to the schedule, and  if the instru- 
mentation produces delays in completing tests,  there 
will be pressure to  avoid  using  it. 

Irrespective of the programming language chosen, 
we believe that this will  be a relatively simple capabil- 

ity to implement in a bit-level simulator. This is  be- 
cause we  will  be  working at low level of abstraction by 
trapping  the small, well-defined set of instruction(s) 
that are used to transfer control between modules, 
rather  than  attempting to identify  such transfers at a 
higher level of abstraction. 

Finally, note  that  none of the analysis capabilities 
are to  be  implemented in the simulator. If the log file is 
available to members of the  test  and quality assurance 
staff, analysis of  the results can  be done in non-real 
time. 

ESTIMATING  RISK OF EXPOSURE TO 
RESIDUAL  FAULTS 

Once estimates of residual fault content have been 
made at the  module level, this information can  be com- 
bined  with dynamic information obtained during test 
and  fielded  use to estimate the system’s risk of expo- 
sure to residual faults [Nik98]. The practical issues 
involved  here are the same as those  of computing test 
efficiency, namely obtaining measurements of  the  sys- 
tem’s structural evolution and its execution profile 
during test  and fielded use.  As  previously  noted, 
measuring  the system’s structural evolution can be done 
as part of the configuration management process, trans- 
parently  to  the development team. For MDS, we  intend 
to build  into  the  bit-level simulator on  which the flight 
components will  be  tested  the capability of measuring 
and  recording  the execution profile of the system under 
test. 

MEASURING  REQUIREMENTS  RISK 

One of the software maintenance problems of  any 
development organization is to evaluate the risk of im- 
plementing requirements changes. These changes can 
affect the reliability  and maintainability of the software. 
As  part of our work  on  MDS,  we are determining the 
applicability of the risk assessment used  on the STS 
flight software. To assess the  risk of change, the soft- 
ware development contractor uses a number  of risk 
factors, which  are described below. The risk factors 
were identified by agreement between  NASA  and  the 
development contractor based  on assumptions about the 
risk  involved in making changes to the software. This 
formal process  is  called a risk  assessment.  No require- 
ments change is  approved by the change control board 
without an accompanying  risk assessment. During risk 
assessment,  the development contractor attempts to 
answer  such questions as: “Is this change highly com- 
plex relative to other software changes that have  been 
made  on  the Shuttle?” If this  is the case, a high-risk 
value  would  be  assigned  for  the complexity criterion. 
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To date this qualitative risk assessment has proven  use- 
ful for identifying possible risky requirements changes 
or, conversely, providing assurance that  there  are no 
unacceptable risks in  making a change. However,  there 
has been  no quantitative evaluation to determine 
whether, for example, high risk factor software was 
really less reliable and maintainable than  low risk factor 
software. In addition, there is  no  model for predicting 
the reliability and  maintainability of the software, if the 
change is implemented. The intent of our work  with 
MDS  is  to address both of these issues. 

We had considered using requirements attributes 
like completeness, consistency, correctness, etc., as risk 
factors [Dav90]. While these are useful generic con- 
cepts, they are difficult to quantify. Although  some of 
the following risk factors also have qualitative values 
assigned, there are a number  of quantitative factors, and 
many of the factors deal with the execution  behavior of 
the software (i.e., reliability), which is our research 
interest. 

The following are the definitions of the risk factors, 
where  we have placed the factors into categories and 
have provided our interpretation of the  question  the 
factor is designed to answer. In addition, we added  the 
risk factor requirements specijications techniques be- 
cause we feel that this one could represent the highest 
reliability risk of  all  the factors if a technique leads  to 
misunderstanding of the intent of the  requirements. If 
the answer to a yesho question is “yes”, it means  this is 
a high-risk change with respect to the given factor. If 
the answer to a question that requires an estimate is an 
anomalous value, it means this is a high-risk change 
with respect to the given factor. 

Complexity Factors 

0 Qualitative assessment of complexity of 
change (e.g.,  very complex) 
- Is this change highly complex relative to 
other software changes that have been made 
on the Shuttle? 

0 Number of modifications or iterations on the 
proposed change 
- How many times must the change be modi- 
fied  or presented to the Change Control Board 
(CCB) before it is approved? 

Size Factors 

0 Number of lines of code affected by the 
change 
- How many lines of  code  must be changed to 
implement the change? 

Size of data and code areas affected by the 

- How many bytes of existing data and code 
are affected by the change? 

change 

Criticality of Change Factors 

0 Whether  the software change is  on a nominal 
or off-nominal program path (i.e., exception 
condition) 
- Will a change to an off-nominal program 
path affect the reliability of the software? 

0 Operational phases affected (e.g., ascent, orbit, 
and landing) 
- Will a change to a critical phase of the mis- 
sion (e.g., ascent and landing) affect the reli- 
ability of the software? 

Locality of Change Factors 

The area of the program affected (i.e., critical 
area such as code for a mission abort se- 
quence) 
- Will the change affect an area of the code 
that is critical to mission success? 
Recent changes to  the code in the area affected 
by the requirements change 
- Will successive changes to the code in one 
area lead to non-maintainable code? 
New or existing code that  is affected 
- Will a change to new code (i.e., a change on 
top of a change) lead to non-maintainable 
code? 
New or existing code that is affected 
- Will the change be on a path where only a 
small number of system or hardware failures 
would  have to occur before the changed code 
is executed? 

Requirements Issues and Function Factors 

0 Number and types of other requirements af- 
fected by  the  given requirement change (re- 
quirements issues) 
- Are there other requirements that are going 
to be affected by this change? I f  so, these re- 
quirements will have to be resolved before im- 
plementing the given requirement. 

0 Possible conflicts among requirements 
changes (requirements issues) 
- Will this change conflict with other require- 
ments changes (e.g., lead to conflicting opera- 
tional scenarios) 
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Number of principal software functions affected 

- How many major  software  functions  will 
have to  be changed to make the given change? 

by the change 

Performance Factors 

0 Amount of memory  required to implement  the 
change 
- Will the change use memory to the extent that 
other functions  will be not have suficient 
memory to  operate effectively? 

- Will the change use CPU  cycles  to the extent 
that other functions will not have suficient 
CPU  capacity  to  operate effectively? 

0 Effect on CPU performance 

Personnel Resources Factors 

0 Number of inspections required to approve the 
change. 

0 Manpower requirements required to imple- 
ment the change 
- Will the manpower required to implement the 
software change be signijicant? 

Manpower required  to  verify  and  validate  the 

- Will the manpower  required to verify and 
validate the software change be signijicant? 

correctness of the change 

Tools Factor 

0 Any software tools creation or modification 
required to implement the change 
- Will the implementation of the change re- 
quire the development and testing of new 
tools? 

flow diagram, state chart, pseudo code, control 
diagram). 
- Will the requirements  specijication method 
be dificult  to understand and translate into 
code ? 

0 Requirements specifications techniques (e.g., 

We have access to several sets of data from  the 
Space Shuttle of  the following types: 
A. Pre-release and  post release failure data from the 

Space Shuttle from 1983 to  the present. 
B. Risk factors for the Shuttle Three Engine Out Auto 

Contingency and Single Global Positioning System 
software. This software was  released to NASA  by 
the developer on 10/18/95 and 3/5/97, respectively. 

C. Metrics data for 1400 Shuttle modules,  each  with 
26 metrics. 

We will  use  the Shuttle data to test our hypothesis 
about the  ability of risk factors to discriminate between 
levels  of reliability and complexity, and  will work with 
the  MDS to apply our findings. We will also attempt to 
identify  more quantitative risk factors than those given 
above, based  on structural measurements  of the UML 
specifications and designs that  will be produced by the 
MDS. This project provides a rare opportunity to work 
with the software development team  and testers to es- 
tablish a measurement  plan  form  the inception of a 
project as opposed to the usual situation of  having to 
intervene in  an on-going  project. We plan to instrument 
the software system for obtaining measurements 
throughout  the development and maintenance process. 

CONCLUSION 

This research  is another in  the series of our soft- 
ware  measurement projects that has included software 
reliability modeling  and prediction, metrics analysis, 
risk analysis, and  maintenance stability analysis 
[Mun98,  Nik98, Sch97, Sch981. We have been  involved 
in the development and  application of software reliabil- 
ity  models for many  years [Sch93, Sch921.  Our  models, 
as is  the case in general in software reliability, use fail- 
ure data as the driver. This approach has the advantage 
of using a metric  that represents the dynamic behavior 
of  the  software.  However,  this data is not available until 
the test  phase. Predictions at this phase are useful but it 
would  be  much  more useful to predict at an earlier 
phase - preferably during requirements analysis-when 
the cost of error correction  is relatively low. Thus, there 
is great interest in the software reliability and metrics 
field in using static attributes of software in reliability 
modeling  and  prediction. 

Our earlier work indicates that structural measure- 
ments  of a software system are strongly related to the 
system’s fault content. The techniques to analyze this 
information  and produce the desired estimates are based 
on well-understood multivariate analysis techniques, 
and  are  appropriate  performed by members of a soft- 
ware  quality assurance team. The structural measure- 
ments  required  to  make these estimates can be easily 
collected as part of the development process, requiring 
little or no additional effort on  the part of the develop- 
ment staff. Estimates of proportional fault content can 
be  made by using structural information alone. We are 
currently working  with  the  MDS project at JPL to im- 
plement these measurement mechanisms. 

The failure and fault information required to cali- 
brate  the  models, on the other hand,  may  be more diffi- 
cult to collect. Modern configuration management and 
problem reporting systems can automate much of the 
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data collection process - failure reports can be  associ- 
ated  with the files and  modules  that  were  changed in 
response to a failure report. Although this will require 
developers to provide that  information on problem  re- 
port forms as part of problem identification and repair 
activity, this does not represent any additional effort in 
that developers are already  required to provide this  in- 
formation. 

Identification and counting of  the faults, however, 
is still largely a manual process, as is tracing them  back 
to their points of origin. Although  this is work  that 
need  not be performed by the development team,  re- 
sources do need to be allocated to the  quality assurance 
staff members that  will perform this type of  analysis. 
Our experience indicates that for a project  the  size of 
MDS, roughly one or two additional analysts would 
have to be  added to a development team several dozen 
strong. As part of our future work, we hope  to develop 
automated techniques for assisting analysts in this  area. 
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